Prediction Workshop

BSCW Test Case

Presented by:

Pawel Chwalowski

Aeroelasticity Branch, NASA Langley Research Center

Benchmark Supercritical Wing (BSCW)

- Simple, rectangular wing
- Data acquired under mixed attached/separated flow conditions

Known deficiencies:

- Limited number of pressure transducers in experimental data
- Limited number of discrete frequencies of oscillation
- Mach number is at edge of acceptable range for quality pressure data with splitter plate

M=0.85, Re_c=4.49 million, test medium: R-134a

Steady Case

i.
$$\alpha = 5^{\circ}$$

Dynamic Cases b)

i.
$$\alpha = 5^{\circ}$$
, $\theta = 1^{\circ}$, $f = 1$ Hz

ii.
$$\alpha = 5^{\circ}$$
, $\theta = 1^{\circ}$, $f = 10 \text{ Hz}$

CFD and Aeroelastic Analysis

http://fun3d.larc.nasa.gov/

FUN3D Analysis

- FUN3D v.11.6
- Roe scheme
- Venkatakrishnan flux limiter
- SA turbulence model
- Mixed element grids: created by Pawel Chwalowski using VGRID

Coarse Grid: 2968550 nodes Medium Grid: 9005346 nodes Fine Grid: 26786862 nodes

FUN3D Analysis Convergence

FUN3D Analysis Convergence

BSCW Dynamic Cases Computational Matrix

1Hz Case

Time \ Grid	Coarse	Medium	Fine
	dt / dn / N	dt / dn / N	dt / dn / N
1	0.0078 / 128 / 8	0.0078 / 128 / 8	0.0078 / 128 / 8
2		0.0039 / 256 / 8	
3		0.00098 / 1024 / 2	0.00098 / 1024 / 2

10Hz Case

Time \ Grid	Coarse	Medium	Fine
	dt / dn / N	dt / dn / N	dt / dn / N
1	0.00078 / 128 / 8	0.00078 / 128 / 8	0.00078 / 128 / 4
2			
3		0.000098 / 1024 / 2	0.000098 / 1024 / 2

*dt: timestep size (seconds)

dn: # of timesteps per cycle

N: # of cycles

Analyses not completed

Note: 1. 25 subiterations per time step

2. Solutions were run for 2 cycles before unsteady surface pressure was collected

BSCW Dynamic Cases Computational Matrix

1Hz Case

Time \ Grid	Coarse	Medium	Fine
	dt / dn / N	dt / dn / N	dt / dn / N
1	0.0078 / 128 / 8	0.0078 / 128 / 8	0.0078 / 128 / 8
2		0.0039 / 256 / 8	
3		0.00098 / 1024 / 2	0.00098 / 1024 / 2

10Hz Case

Time \ Grid	Coarse	Medium	Fine
	dt / dn / N	dt / dn / N	dt / dn / N
1	0.00078 / 128 / 8	0.00078 / 128 / 8	0.00078 / 128 / 4
2			
3		0.000098 / 1024 / 2	0.000098 / 1024 / 2

*dt: timestep size (seconds)

dn: # of timesteps per cycle

N: # of cycles

Note: 1. 25 subiterations per time step

2. Solutions were run for 2 cycles before unsteady surface pressure was collected

Mean Cp Upper and Lower

Unsteady f=1Hz Magnitude and Phase

Unsteady f=10Hz Magnitude and Phase

Animations

BSCW, 1Hz

BSCW, 1Hz, Mach Contours, Medium Grid/256 time steps per cycle

Summary

- BSCW is a simple geometry and a more complex flow physics case for AePW than RSW
- This a 'semi-blind' with some experimental data published before
- Steady state solutions show an oscillatory behaviour
- •Turbulence model and subiteration convergence effects on solution needs to be further investigated
- Experimental pressure tabs resolution needs to be addressed